Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Article En | MEDLINE | ID: mdl-38197701

White adipose tissue (WAT) controls energy storage, expenditure, and endocrine function. Rho-kinase (ROCK) is related to impaired thermogenesis, downregulation of preadipocyte differentiation, and adipokine production. Furthermore, WAT ROCK responds to metabolic stress from high-fat diets or diabetes. However, ROCK distribution in adipose depots and its response to aging and sex remain unclear. Thus, we aim to investigate ROCK function in adipose tissue of rodent and human in response to aging and sex. We observed specific differences in the ROCK1/2 distribution in inguinal WAT (ingWAT), perigonadal WAT (pgWAT), and brown adipose tissue of male and female rodents. However, ROCK2 expression was lower in female ingWAT compared with males, a fact that was not observed in the other depots. In the pgWAT and ingWAT of male and female rodents, ROCK activity increased during development. Moreover, middle-aged female rodents and humans showed downregulation in ROCK activity after acute physical exercise. Interestingly, ROCK levels were associated with several inflammatory markers both in rats and humans WAT (Nfkb1, Tnf, Il1b, Il6, and Mcp1). Induction of cell senescence by etoposide elevates ROCK activity in human preadipocytes; however, silencing ROCK1/2 demonstrates improvement in the inflammatory and cell senescence state. Using public databases, several pathways were strongly associated with ROCK modulation in WAT. In summary, WAT ROCK increases with development in association with inflammatory markers. Further, ROCK activity was attenuated by acute physical exercise, implicating it as a possible therapeutic target for metabolism improvement mediated by adipose tissue inflammatory state changes.


Rodentia , rho-Associated Kinases , Humans , Rats , Male , Female , Animals , Middle Aged , rho-Associated Kinases/physiology , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Aging , Adipose Tissue
2.
Mol Metab ; 78: 101816, 2023 Dec.
Article En | MEDLINE | ID: mdl-37821006

OBJECTIVE: The mitochondrial unfolded protein response (UPRmt) is an adaptive cellular response to stress to ensure mitochondrial proteostasis and function. Here we explore the capacity of physical exercise to induce UPRmt in the skeletal muscle. METHODS: Therefore, we combined mouse models of exercise (swimming and treadmill running), pharmacological intervention, and bioinformatics analyses. RESULTS: Firstly, RNA sequencing and Western blotting analysis revealed that an acute aerobic session stimulated several mitostress-related genes and protein content in muscle, including the UPRmt markers. Conversely, using a large panel of isogenic strains of BXD mice, we identified that BXD73a and 73b strains displayed low levels of several UPRmt-related genes in the skeletal muscle, and this genotypic feature was accompanied by body weight gain, lower locomotor activity, and aerobic capacity. Finally, we identified that c-Jun N-terminal kinase (JNK) activation was critical in exercise-induced UPRmt in the skeletal muscle since pharmacological JNK pathway inhibition blunted exercise-induced UPRmt markers in mice muscle. CONCLUSION: Our findings provide new insights into how exercise triggers mitostress signals toward the oxidative capacity in the skeletal muscle.


JNK Mitogen-Activated Protein Kinases , Physical Conditioning, Animal , Animals , Mice , JNK Mitogen-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Unfolded Protein Response , Mitogen-Activated Protein Kinase 8/metabolism
3.
Life Sci ; 329: 121916, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37419412

Obesity can exacerbate the systemic inflammatory process, leading to increased infiltration of monocytes in white adipose tissue (WAT) and polarization of these cells into pro-inflammatory M1 macrophages, while reducing the population of anti-inflammatory M2 macrophages. Aerobic exercise has been shown to be effective in reducing the pro-inflammatory profile. However, the impact of strength training and the duration of training on macrophage polarization in the WAT of obese individuals have not been widely studied. Therefore, our aim was to investigate the effects of resistance exercise on macrophage infiltration and polarization in the epididymal and subcutaneous adipose tissue of obese mice. We compared the following groups: Control (CT), Obese (OB), Obese 7-day strength training (STO7d), and Obese 15-day strength training (STO15d). Macrophage populations were evaluated by flow cytometry: total macrophages (F4/80+), M1 (CD11c), and M2 (CD206) macrophages. Our results demonstrated that both training protocols improved peripheral insulin sensitivity by increasing AKT phosphorylation (Ser473). Specifically, the 7-day training regimen reduced total macrophage infiltration and M2 macrophage levels without altering M1 levels. In the STO15d group, significant differences were observed in total macrophage levels, M1 macrophages, and the M1/M2 ratio compared to the OB group. In the epididymal tissue, a reduction in the M1/M2 ratio was observed in the STO7d group. Overall, our data demonstrate that 15 days of strength exercise can reduce the M1/M2 ratio of macrophages in white adipose tissue.


Adipose Tissue , Insulin Resistance , Mice , Animals , Inflammation , Adipose Tissue, White , Obesity/therapy , Macrophages , Mice, Inbred C57BL , Mice, Obese
4.
Diabetol Metab Syndr ; 15(1): 124, 2023 Jun 09.
Article En | MEDLINE | ID: mdl-37296485

Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.

5.
J Nutr Biochem ; 119: 109410, 2023 09.
Article En | MEDLINE | ID: mdl-37364793

The gut has been suggested as the first organ to be affected by unbalanced diets contributing to the obesogenic process. This study aimed to test a short time-course exposition model to a known pro- or anti-inflammatory enriched fatty diet to understand the early gut alterations. Male mice were exposed to the chow diet (CT), high-fat (HF) diet, or a high-fat diet partially replaced on flaxseed oil (FS), rich in omega-3 (ω3), for 14 days. HF and FS increased the total body weight mass compared with the CT group, but FS reduced the epididymal fat depot compared to HF. The bioinformatics from mice and human databases showed the Zo1-Ocln-Cldn7 tight junctions as the main protein-triad. In the ileum, the HF diet has increased IL1ß transcript and IL1ß, TNFα, and CD11b proteins, but reduced the tight junctions (Zo1, Ocln, and Cld7) compared to the CT group. Despite the FS diet being partially efficient in protecting the ileum against inflammation, the tight junctions were increased, compared to the HF group. The GPR120 and GPR40 receptors were unaffected by diets, but GPR120 was colocalized on the surface of ileum macrophages. The short period of a high-fat diet was enough to start the obesogenic process, ileum inflammation, and reduce the tight junctions. Flaxseed oil did not protect efficiently against dysmetabolism. Still, it increased the tight junctions, even without alteration on inflammatory parameters, suggesting the protection against gut permeability during early obesity development.


Fatty Acids, Omega-3 , Linseed Oil , Humans , Male , Animals , Mice , Linseed Oil/pharmacology , Tight Junctions/metabolism , Fatty Acids, Unsaturated , Inflammation/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Fatty Acids
6.
Cell Mol Life Sci ; 80(5): 122, 2023 Apr 13.
Article En | MEDLINE | ID: mdl-37052684

OBJECTIVE: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/-) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet. METHODS: Slc2a4+/- mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line. RESULTS: When Slc2a4+/- mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle. CONCLUSIONS: Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/- mouse model.


Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Mice , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism
7.
Endocrine ; 80(3): 529-540, 2023 06.
Article En | MEDLINE | ID: mdl-37029854

BACKGROUND AND AIMS: The gut microbiome is associated with obesity, mainly mediated by bacteria-produced short-chain fatty acids (SCFAs). It is unknown how SCFA concentrations are associated with the phenotypes metabolically healthy normal weight (MHNW), metabolically unhealthy normal weight (MUNW), metabolically healthy obese/overweight (MHO), and metabolically unhealthy obese/overweight (MUO). We compared plasma and fecal SCFA concentrations among adult women categorized according to the metabolic phenotypes mentioned above and examined associations between SCFA and adiposity and components of energy and glucose homeostasis. METHODS: This was a cross-sectional study involving 111 participants. Body composition was assessed by DEXA. Energy and glycemic homeostasis were assessed by the standard mixed-meal tolerance test coupled with indirect calorimetry. SCFAs were quantified by gas chromatography and mass spectrometry. RESULTS: Only plasma propionate was increased in the MHNW phenotype compared to the MHO and MUO phenotypes [p < 0.05]. Fecal propionate and butyrate concentrations and plasma propionate concentrations were inversely associated with total and visceral adiposity [p < 0.05]. Fecal and plasma SCFA concentrations were associated with reduced glucose, insulin and HbA1c levels, increased fasting and postprandial GLP-1 levels; and more preserved beta-cell function [p < 0.05]. Fecal and plasma SCFA concentrations were positively correlated with resting energy expenditure and lipid oxidation rate and inversely correlated with the oxidation rate of carbohydrates [p < 0.05]. CONCLUSION: These findings reinforce the concept that fecal and plasma SCFA concentrations are linked to specific components of energy and glucose homeostasis; and body adiposity. However, it was not possible to discriminate the different metabolic phenotypes of adiposity based on the determination of fecal SCFA concentrations.


Metabolic Syndrome , Nutritionists , Female , Humans , Overweight/metabolism , Adiposity , Propionates , Cross-Sectional Studies , Obesity/metabolism , Fatty Acids, Volatile , Phenotype , Homeostasis , Glucose , Body Mass Index , Metabolic Syndrome/metabolism
9.
J Nutr Biochem ; 114: 109270, 2023 04.
Article En | MEDLINE | ID: mdl-36706930

It is known that long-term high-fat diet (HF) feeding drastically affects the adipose tissue, contributing to metabolic disorders. Recently, short-term HF consumption was shown to affect different neuronal signaling pathways. Thus, we aimed to evaluate the inflammatory effects of a short-term HF and whether a diet containing omega-3 fatty acid fats from flaxseed oil (FS) has protective effects. Mice were divided into three groups for 3 d, according to their diets: Control group (CT), HF, or FS for 3 d. Lipid profiles were assessed through mass spectrometry and inflammatory markers by RT-qPCR and Western blotting. After short-term HF, mice increased food intake, body weight, adiposity, and fasting glucose. Increased mRNA content of Ccl2 and Tnf was demonstrated in the HF compared to CT in mesenteric adipose tissue. In the liver, TNFα protein was higher in the HF group than in CT, followed by a decreased polyunsaturated fatty acids tissue incorporation in HF. On the other hand, the consumption of FS reduced food intake and fasting glucose, as well as increased omega-3 fatty acid incorporation in MAT and the liver. However, short-term FS was insufficient to control the early inflammation triggered by HF in MAT and the liver. These data demonstrated that a 3-d HF diet is enough to damage glucose homeostasis and trigger inflammation. In contrast, short-term FS protects against increased food intake and fasting glucose but not inflammation in mice.


Diet, High-Fat , Fatty Acids, Omega-3 , Mice , Animals , Diet, High-Fat/adverse effects , Linseed Oil/pharmacology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Inflammation/metabolism , Adipose Tissue/metabolism , Glucose/metabolism , Mice, Inbred C57BL
11.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36382659

Omega 3 (ω3) fatty acids have been described since the 1980s as promising anti-inflammatory substances. Prostaglandin and leukotriene modulation were exhaustively explored as the main reason for ω3 beneficial outcomes. However, during the early 2000s, after the human genome decoding advent, the nutrigenomic approaches exhibited an impressive plethora of ω3 targets, now under the molecular point of view. Different G protein-coupled receptors (GPCRs) recognizing ω3 and its derivatives appear to be responsible for blocking inflammation and insulin-sensitizing effects. A new class of ω3-derived substances, such as maresins, resolvins, and protectins, increases ω3 actions. Inflammasome disruption, the presence of GPR120 on immune cell surfaces, and intracellular crosstalk signaling mediated by PPARγ compose the last discoveries regarding the multipoint anti-inflammatory targets for this nutrient. This review shows a detailed mechanistic proposal to understand ω3 fatty acid action over the inflammatory environment in the background of several chronic diseases.

12.
Sci Adv ; 8(30): eabm7355, 2022 07 29.
Article En | MEDLINE | ID: mdl-35905178

Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.


AMP-Activated Protein Kinases , Interleukin-6 , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Fatty Acids/metabolism , Humans , Hypothalamus/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Muscle, Skeletal/metabolism , Oxidation-Reduction
13.
Clin Exp Pharmacol Physiol ; 49(10): 1072-1081, 2022 10.
Article En | MEDLINE | ID: mdl-35690890

Obesity is associated with low-grade inflammation and disturbances in hepatic metabolism. This study aimed to investigate the effects of resistance exercise on inflammatory signalling related to IκB kinase (IKK) ɛ protein (IKKɛ) and on hepatic fat accumulation in obese mice. Male Swiss mice were distributed into three groups: control (CTL) fed with standard chow; obese (OB) mice induced by a high-fat diet (HFD); obese exercised (OB + RE) mice fed with HFD and submitted to a resistance exercise training. The resistance exercise training protocol consisted of 20 sets/3 ladder climbs for 8 weeks, three times/week on alternate days. The training overload was equivalent to 70% of the maximum load supported by the rodent. Assays were performed to evaluate weight gain, hepatic fat content, fasting glucose, insulin sensitivity, IKKɛ phosphorylation and proteins related to insulin signalling and lipogenesis in the liver. Mice that received the high-fat diet showed greater adiposity, impaired insulin sensitivity, increased fasting glucose and increased hepatic fat accumulation. These results were accompanied by an increase in IKKɛ phosphorylation and lipogenesis-related proteins such as cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) in the liver of obese mice. In contrast, exercised mice showed lower body weight and adiposity evolution throughout the experiment. In addition, resistance exercise suppressed the effects of the high-fat diet by reducing IKKɛ phosphorylation and hepatic fat content. In conclusion, resistance exercise training improves hepatic fat metabolism and glycaemic homeostasis, which are, at least in part, linked to the anti-inflammatory effect of reduced IKKɛ phosphorylation in the liver of obese mice.


Adiposity , I-kappa B Kinase , Liver , Obesity , Resistance Training , Animals , Diet, High-Fat/adverse effects , Glucose/metabolism , Humans , I-kappa B Kinase/metabolism , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Phosphorylation
14.
Sci Rep ; 12(1): 6913, 2022 04 28.
Article En | MEDLINE | ID: mdl-35484170

Obesity is a disease characterized by the exacerbated increase of adipose tissue. A possible way to decrease the harmful effects of excessive adipose tissue is to increase the thermogenesis process, to the greater energy expenditure generated by the increase in heat in the body. In adipose tissue, the thermogenesis process is the result of an increase in mitochondrial work, having as substrate H+ ions, and which is related to the increased activity of UCP1. Evidence shows that stress is responsible for increasing the greater induction of UCP1 expression via ß-adrenergic receptors. It is known that physical exercise is an important implement for sympathetic stimulation promoting communication between norepinephrine/epinephrine with membrane receptors. Thus, the present study investigates the influence of short-term strength training (STST) on fatty acid composition, lipolysis, lipogenesis, and browning processes in the subcutaneous adipose tissue (sWAT) of obese mice. For this, Swiss mice were divided into three groups: lean control, obesity sedentary, and obese strength training (OBexT). Obese animals were fed a high-fat diet for 14 weeks. Trained obese animals were submitted to 7 days of strength exercise. It was demonstrated that STST sessions were able to reduce fasting glycemia. In the sWAT, the STST was able to decrease the levels of the long-chain fatty acids profile, saturated fatty acid, and palmitic fatty acid (C16:0). Moreover, it was showed that STST did not increase protein levels responsible for lipolysis, the ATGL, ABHD5, pPLIN1, and pHSL. On the other hand, the exercise protocol decreased the expression of the lipogenic enzyme SCD1. Finally, our study demonstrated that the STST increased browning process-related genes such as PGC-1α, PRDM16, and UCP1 in the sWAT. Interestingly, all these biomolecular mechanisms have been observed independently of changes in body weight. Therefore, it is concluded that short-term strength exercise can be an effective strategy to initiate morphological changes in sWAT.


Fatty Acids , Resistance Training , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adipose Tissue/metabolism , Animals , Fatty Acids/metabolism , Humans , Mice , Mice, Obese , Obesity/metabolism , Thermogenesis
15.
Prostaglandins Other Lipid Mediat ; 159: 106622, 2022 04.
Article En | MEDLINE | ID: mdl-35091082

The incidence of cardiovascular diseases and metabolic disorders has increased worldwide. Clinical and experimental research has shown that the consumption of ω-3 FAs can be beneficial to metabolism in several ways, as they can act on metabolic pathways. Our objective was to evaluate the effect of treatment with linseed oil, a vegetable oil rich in alpha-linolenic acid, and EPA and DHA in different proportions (3:1 EPA:DHA, and 1:3 EPA:DHA), on the metabolic disorders induced by a high-fat diet (20 % lipids) in rats for 2 weeks, after 18 weeks of consumption of a high-fat diet. In 18 weeks, the high-fat diet increased blood glucose, systolic blood pressure, triglyceride concentration in the liver and adipose tissue, and impaired insulin sensibility without interfering in the weight of the animals. All treatments were effective in reducing the deposition of hepatic type III collagen, the proportion of ω-6/ω-3 in the liver and WAT (white adipose tissue), the proportion of area/number of adipocytes, and the gene expression of the ACC, FAS, and CPT1 enzymes. In addition, treatment with EPA and DHA reduced blood glucose, serum TNF-α concentration, amount of liver fat, degree of microsteatosis and type I collagen deposition in the liver, deposition of type I and III collagen in TA, gene expression of the transcription factor SREBP-1c, and increased hepatic binucleation. EPA in major proportion was more effective in reducing the area of adipocytes, hepatic triglyceride concentration, PPAR-α expression, and WAT fat weight. DHA in a major proportion reduced the concentration of MCP1 in WAT. LO treatment did not have any isolated effects. We concluded that EPA and DHA were more effective in treating metabolic damage than treatment with LO, leading to a more favorable metabolic profile.


Diet, High-Fat , Fatty Acids, Omega-3 , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Linseed Oil/pharmacology , Liver/metabolism , Mice , Mice, Inbred C57BL , Rats , Triglycerides/metabolism
16.
J Physiol ; 600(4): 797-813, 2022 02.
Article En | MEDLINE | ID: mdl-33450053

KEY POINTS: Time-restricted feeding (TRF, in which energy intake is restricted to 8 h/day during the dark phase) alone or combined with aerobic exercise (AE) training can prevent weight gain and metabolic disorders in Swiss mice fed a high-fat diet. The benefits of TRF combined with AE are associated with improved hepatic metabolism and decreased hepatic lipid accumulation. TRF combined with AE training increased fatty acid oxidation and decreased expression of lipogenic and gluconeogenic genes in the liver of young male Swiss mice. TRF combined with AE training attenuated the detrimental effects of high-fat diet feeding on the insulin signalling pathway in the liver. ABSTRACT: Time-restricted feeding (TRF) or physical exercise have been shown to be efficient in the prevention and treatment of metabolic disorders; however, the additive effects of TRF combined with aerobic exercise (AE) training on liver metabolism have not been widely explored. In this study TRF (8 h in the active phase) and TRF combined with AE (TRF+Exe) were compared in male Swiss mice fed a high-fat diet, with evaluation of the effects on insulin sensitivity and expression of hepatic genes involved in fatty acid oxidation, lipogenesis and gluconeogenesis. As in previous reports, we show that TRF alone (eating only between zeitgeber time 16 and 0) was sufficient to reduce weight and adiposity gain, increase fatty acid oxidation and decrease lipogenesis genes in the liver. In addition, we show that mice of the TRF+Exe group showed additional adaptations such as increased oxygen consumption ( V̇O2${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ ), carbon dioxide production ( V̇CO2${\dot V_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}$ ) and production of ketone bodies (ß-hydroxybutyrate). Also, TRF+Exe attenuated the negative effects of high-fat diet feeding on the insulin signalling pathway (insulin receptor, insulin receptor substrate, Akt), and led to increased fatty acid oxidation (Ppara, Cpt1a) and decreased gluconeogenic (Fbp1, Pck1, Pgc1a) and lipogenic (Srebp1c, Cd36) gene expression in the liver. These molecular results were accompanied by increased glucose metabolism, lower serum triglycerides and reduced hepatic lipid content in the TRF+Exe group. The data presented in this study show that TRF alone has benefits but TRF+Exe has additive benefits and can mitigate the harmful effects of consuming a high-fat diet on body adiposity, liver metabolism and glycaemic homeostasis in young male Swiss mice.


Insulin Resistance , Metabolic Diseases , Animals , Diet, High-Fat/adverse effects , Liver/metabolism , Male , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism , Weight Gain
17.
Life Sci ; 290: 120229, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-34914931

Lipokines are bioactive compounds, derived from adipose tissue depots, that control several molecular signaling pathways. Recently, 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an oxylipin, has gained prominence in the scientific literature. An increase in circulating 12,13-diHOME has been associated with improved metabolic health, and the action of this molecule appears to be mediated by brown adipose tissue (BAT). Scientific evidence indicates that the increase in serum levels of 12,13-diHOME caused by stimuli such as physical exercise and exposure to cold may favor the absorption of fatty acids by brown adipose tissue and stimulate the browning process in white adipose tissue (WAT). Thus, strategies capable of increasing 12,13-diHOME levels may be promising for the prevention and treatment of obesity and metabolic diseases. This review explores the relationship of 12,13-diHOME with brown adipose tissue and its role in the metabolic health context, as well as the signaling pathways involved between 12,13-diHOME and BAT.


Adipose Tissue, Brown/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Oleic Acids/metabolism , Adipose Tissue, White/metabolism , Humans , Molecular Targeted Therapy , Oleic Acids/blood , Oleic Acids/pharmacology , Oxylipins/metabolism
18.
Trials ; 22(1): 927, 2021 Dec 18.
Article En | MEDLINE | ID: mdl-34922604

The low-grade inflammation is pivotal in obesity and its comorbidities; however, the inflammatory proteins are out of target for traditional drug therapy. Omega-3 (ω3) fatty acids can modulate the downstream signaling of Toll-like receptor (TLR) and tumor necrosis factor-α receptor (TNFα) through GPR120, a G-protein-coupled receptor, a mechanism not yet elucidated in humans. This work aims to investigate if the ω3 supplementation, at a feasible level below the previously recommended level in the literature, is enough to disrupt the inflammation and endoplasmic reticulum stress (ER-stress), and also if in acute treatment (3 h) ω3 can activate the GPR120 in peripheral blood mononuclear cells (PBMC) and leukocytes from overweight non-alcoholic fatty liver disease (NAFLD) participants. The R270H variant of the Ffar4 (GPR120 gene) will also be explored about molecular responses and blood lipid profiles. A triple-blind, prospective clinical trial will be conducted in overweight men and women, aged 19-75 years, randomized into placebo or supplemented (2.2 g of ω3 [EPA+DHA]) groups for 28 days. For sample calculation, it was considered the variation of TNFα protein and a 40% dropout rate, obtaining 22 individuals in each group. Volunteers will be recruited among patients with NAFLD diagnosis. Anthropometric parameters, food intake, physical activity, total serum lipids, complete fatty acid blood profile, and glycemia will be evaluated pre- and post-supplementation. In the PBMC and neutrophils, the protein content and gene expression of markers related to inflammation (TNFα, MCP1, IL1ß, IL6, IL10, JNK, and TAK1), ER-stress (ATF1, ATF6, IRE1, XBP1, CHOP, eIF2α, eIF4, HSP), and ω3 pathway (GPR120, ß-arrestin2, Tab1/2, and TAK1) will be evaluated using Western blot and RT-qPCR. Participants will be genotyped for the R270H (rs116454156) variant using the TaqMan assay. It is hypothesized that attenuation of inflammation and ER-stress signaling pathways in overweight and NAFLD participants will be achieved through ω3 supplementation through binding to the GPR120 receptor. TRIAL REGISTRATION: ClinicalTrials.gov #RBR-7x8tbx. Registered on May 10, 2018, with the Brazilian Registry of Clinical Trials.


Non-alcoholic Fatty Liver Disease , Endoplasmic Reticulum Stress , Humans , Inflammation , Leukocytes, Mononuclear , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Overweight , Prospective Studies , Randomized Controlled Trials as Topic
19.
Life Sci ; 287: 120124, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34748760

Hepatic steatosis is directly associated with hepatic inflammation and insulin resistance, which is correlated with hyperglycemia and type 2 diabetes mellitus (T2DM). Aerobic and strength training have been pointed out as efficient strategies against hepatic steatosis. However, little is known about the effects of the combination of those two protocols on hepatic steatosis. Therefore, this study aimed to evaluate the impact of short-term combined training (STCT) on glucose homeostasis and in the synthesis and oxidation of fat in the liver of obesity-induced mice with hepatic steatosis. Swiss mice were distributed into three groups: control lean (CTL), sedentary obese (OB), and combined training obese (CTO). The CTO group performed the STCT protocol, which consisted of strength and aerobic exercises in the same session. The protocol lasted seven days. The CTO group reduced the glucose levels and fatty liver when compared to the OB group. Interestingly, these results were observed even without reductions in body adiposity. CTO group also showed increased hepatic insulin sensitivity, with lower hepatic glucose production (HGP). STCT reduced the expression of the lipogenic genes Fasn and Scd1 and hepatic inflammation, as well as increased the ACC phosphorylation and the oxidative genes Cpt1a and Ppara, reverting the complications caused by obesity. Since this protocol increased lipid oxidation and reduced hepatic lipogenesis, regardless of body fat mass decrease, it can be considered an effective non-pharmacological strategy for the treatment of hepatic steatosis.


Fatty Liver/metabolism , Fatty Liver/therapy , Insulin Resistance/physiology , Insulin/metabolism , Liver/metabolism , Physical Conditioning, Animal/physiology , Animals , Diet, High-Fat/adverse effects , Exercise Test/methods , Male , Mice , Obesity/metabolism , Obesity/therapy , Physical Conditioning, Animal/methods
...